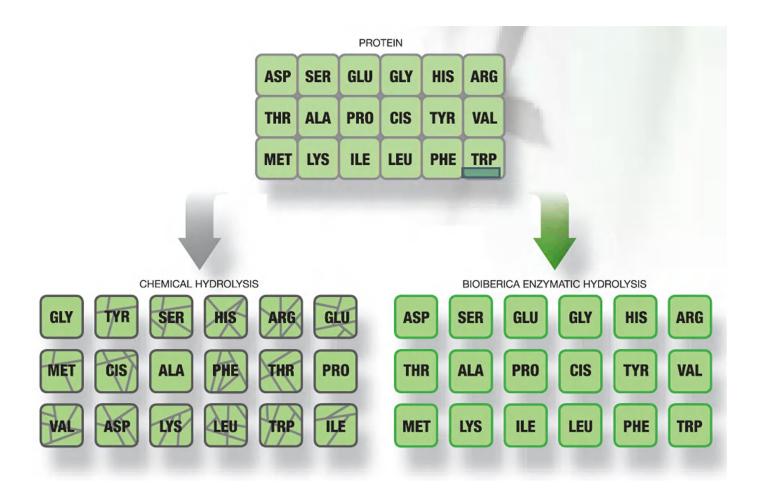

Terra-Sorb Radicular

Free L-isomer Amino Acids from Enzymatic Hydrolysis for Fertigation

Composition	%	Unit	Source
Free amino acids (L-Isomer)	11.5	%	Plants
Total Nitrogen	5.8	%	Plants
Organic Nitrogen	1.8	%	Amino acids
Mineral Nitrogen	4	%	NH₄OH
Density	1.15	g/ml	
PH	5.3	PH	

Why you need Terra-Sorb?


- 1-Plant resistance and recovery under stress situations.
- 2-Stimulus and protection of pollination and fructification.
- 3-Improvement of absorption and translocation of substances inside the plant.
- 4-Effect on fruit quality.
- 5-All biologically active Amino Acids are L- α -Amino acids for only they can form proteins

The L-isomer Amino Acids

There are $18 \text{ L-}\alpha\text{-Amino}$ Acids forming proteins in all living beings: (Alanine, Cysteine, Phenylalanine, Aspartic Acid, Glutamic Acid, Histidine, Isoleucine, Leucine, Lysine, Methionine, Proline, Serine, Tyrosine, Threonine, Tryptophan, Valine)

All these Amino Acids are present in <u>Terra-Sorb®</u> thanks to its production process. Amino Acids intervene in numerous processes in plants. Next, we highlight some of these processes and the main Amino Acids they involve

Function	Amino acids
Radicular development	Methionine and Arginine
Resistance to stress conditions	Proline, Valine, Serine, Lysine, Glutamic Acid and Cysteine.
Hormone precursors	Tryptophan and Methionine
Flavour precursors	Alanine, Glycine and Proline
Colour precursors	Phenylalanine.
Increase of pollen's ger- mination rate	Proline and Glutamic Acid
Increase of seed's ger- mination rate	Proline
Photosynthesis and chlorophyll reinforcement	Alanine, Glycine, Lysine, Glutamic Acid and Proline.
Osmoregulation	Proline
Stomatal opening	Alanine, Glutamic Acid, Lysine, Proline and Methio- nine

Dosages and Usage

Plant	Dosage	Notes
Watermelon, Melon, cucumber and Squash	2 L/1000 m ²	At 4 leaf stage and flowering and fruit set
Cabbage, Cauliflower and lettuce	2-1.5 L/1000 m ²	After transplanting (4 leaf stage) vegetative stage
Tomato, eggplant and pepper	2-1.5 L/1000 m ²	At transplanting & vegetative and flowering stage
Citrus	1.5 L/1000 m ²	At vegetative & flowering and 4-6cm fruit length
Olive	1-1.5 L/1000 m ²	At vegetative & flowering and fruit stage